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An investigation into the existence of hairpin vortices in turbulent channel flow is 
conducted using a database generated by the large-eddy simulation technique. It is 
shown that away from the wall the distribution of the inclination angle of vorticity 
vector gains its maximum at about 45' to the wall. Two-point correlations of velocity 
and vorticity fluctuations strongly support a flow model consisting of vortical 
structures inclined at 45' to the wall. The instantaneous vorticity vectors plotted in 
planes inclined at 45' show that the flow contains an appreciable number of hairpins. 
Vortex lines are used to display the three-dimensional structure of hairpins, which 
are shown to be generated from deformation (or roll-up) of sheets of transverse 
vorticity . 

1. Introduction 
In  1952 Theodorsen characterized turbulent boundary layers as being composed 

of large-scale horseshoe-shaped vortices which are responsible for turbulent transport. 
Since then a number of investigators have proposed physical models of turbulent 
boundary layers that contain as their dominant feature pairs of counter-rotating 
vortices with axes either parallel or inclined to the flow direction. Recently, Wallace 
(1982) has collected ce number of experimental results consistent with the vortex-pair 
model of boundary layers. He proposes a hairpin-like vortex as the dominant flow 
structure, which is formed from the deformation, stretching, and lifting of the 
transverse vortex lines. 

Quantitative evidence in support of the existence of pairs of counter-rotating 
vortical structures inclined to the wall and streamwise direction waa obtained 
from extensive spacetime correlation measurements by Willmarth t Tu (1967). 
Isocorrelation contours of the correlation between pressure fluctuations at a fixed 
point on the wall and the spanwise velocity component w in planes perpendicular to 
the wall and the mean-stream direction ((y, 2)-planes) show sign reversal, with the 
line of zero correlation moving away from the wall in the downstream direction. This 
result is consistent with the presence of lifting streamwise vortices which produce 
reversal in w (and hence the correlation pW) across the horizontal planes containing 
the vortex centres. The correlation between fluctuations of the streamwise velocity 
u at the edge of the sublayer and the streamwise vorticity w, at various points above 
and downstream of the velocity probe was also measured. These data were later 
analysed by Willmarth & Lu (1972). The location of maximum correlation between 
u and w, was along a line through the fixed velocity point inclined at an angle of 
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about 10'. A quadrant analysis of the motions contributing to the W, correlation 
showed that, for large negative values of u, w, was positive for z > 0 and negative for 
z < 0, where the u-probe was located at  z = 0 and clockwise rotation was denoted 
as positive. Based on these measurements, Willmarth & Tu (1967) proposed a model 
for the wall layer consisting of hairpin vortices generated from deformation of 
transverse vortex lines'and inclined downstream and away from the wall. In their 
model, the vortex filaments are deformed in a regular sinusoidal manner with regions 
of flow moving toward and away from the wall alternating in the spanwise direction. 
This model, with a 10' vortex-inclination angle, was proposed only for the wall region, 
and is in contrast to Theodorsen's large-scale horseshoes inclined a t  45" to the flow 
and extending across the entire boundary layer. In  passing, we remark that the 
undisturbed flow consists of sheets of transverse vorticity and not isolated vortex 
tubes or filaments (representing vortices). 

Townsend (1970,1976) shows that an eddy model consisting of a pair of roller eddies 
inclined at about 30' to the flow direction is generally consistent with two-point 
correlation functions calculated from the rapid-distortion theory. He suggests the 
double-roller eddies as the dominant structures in turbulent shear flows. Perry & 
Chong (1982) formulated a model of turbulent boundary layers with a random array 
of A-shaped vortices inclined at a fixed angle to the wall but of different scales. In  
order to reproduce the logarithmic mean-velocity profile, it was assumed that the A 
vortices were confined to a plane and were subject only to plane strain. This model 
provides a structural link between the mean flow and turbulent stresses. 

There is an extensive collection of experimental data pointing to the existence of 
organized structures or disturbance fronts inclined to the wall and the stream 
direction. Kovasznay , Kibens & Blackwelder (1 970) constructed an isocorrelation 
contour plot of spacetime streamwise velocity correlations using a probe fixed at 
y/6 = 0.5 and another at different y-locations. The contour lines (in (y, t)-planes) 
clearly show a downstream tilt. The same feature is also apparent in the correlation 
measurements of Blackwelder & Kovasznay (1972), where the location of the fixed 
probe was close to the wall (y/6=0.03). Tritton's (1967) two-point velocity 
correlations decay more slowly when the probe separation line is directed downstream 
away from the wall. This behaviour is also evident in the correlations of Favre, 
Gaviglio & Dumas (1957). Using spacetime correlation between fluctuations of wall 
shear stress and streamwise velocity with optimum time delays, Kreplin & Eckelmann 
(1979) detected a disturbance 'front ' which had an inclination angle of about 14" to 
the wall at y+ = 50.t However, the front that can be deduced from correlating 
spanwise fluctuations (w, aw/ay l v - o )  does not extend beyond y+ = 30. Brown & 
Thomas (1977), using spacetime correlation of the streamwise velocity and wall shear 
stress, also detected an inclined disturbance front. However, in contrast to Kreplin 
& Eckelmann's measurements, which were limited to the wall region, they measured 
the inclination angle of the front to be 18' across the entire boundary layer. They 
also propose a model in which the organized structure appears as a horseshoe vortex. 
In coqtrast to Willmarth & Tu (1967) and Wallace (1982), who describe the origin 
of the.horseshoe vortices as due to the deformation of the mean-vortex lines (initially 
pointing in the spanwise direction) by random velocity and vorticity fluctuations, 
Brown & Thomas attribute their origin to streamline curvature and the resulting 
Taylor4ortler vortices. Coles (1978) also attributes the origin of sub-layer vortices 
to Taylol-Gortler instability. Finally, Chen & Blackwelder (1978), in a boundary 

t The superscript + denotes non-dimensionalization with the wall friction velocity, u, = ( ~ / p ) i ,  
and kinematic viscosity, u. 
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layer over a slightly heated wall, observed a well-defined temperature ‘front ’ across 
the entire boundary layer with an inclination angle of about 48’. 

There is also evidence for the existence of inclined vortical structures from 
flow-visualization experiments. In their hydroger .bubble flow visualizations, Clark 
& Markland (1971) observed strong streamwise vortex motions close to the wall with 
axis inclined to the wall at about 5’-7’. They point out that ‘these vortices seem to 
travel downstream in counter-rotating pairs ’. They also observed transverse vortices 
and suggest that the observed vortical structures are part of a horseshoe vortex. 
However, these vortical structures were confined to the wall region (y+ < 120). 
Experiments of Head & Bandyopadhyay (1981) have provided very strong support 
for the hairpin vortices as the dominant structures in turbulent boundary layers. In 
a smoke-filled boundary layer, planes inclined at 45’ and 135’ to the flow direction 
were illuminated by an intense light source. The inclined planes in the downstream 
direction (45’) clearly show elongated features, whereas those inclined upstream 
(135’) exhibit rounded features that in many cases occur in adjacent pairs. The 
structure of the flow in the vicinity of the wall is not discernible from the above 
visualizations, and hence the link between the wall layer and the structures appearing 
in the inclined planes could not be established. Using illuminated planes perpendicular 
to the wall and the flow directions, some vortex pairs were observed, but many 
solitary vortices were also observed. This finding is consistent with the dual-view, 
hydrogen-bubble flow-visualization experiments of Smith & Schwartz (1983), who 
observed at least as many solitary vortices as vortex pairs in a transverse (y, %)-plane. 
In order to establish the relationship between the visual patterns and hairpin vortices, 
Acarlar & Smith (1984) generated synthetic hairpins by placing a hemisphere on 
the wall in a laminar boundary layer. The hydrogen-bubble flow patterns were very 
similar to those observed in turbulent boundary layers. They also showed that the 
visual pattern observed is very much dependent upon the location and orientation 
of the bubble wire. 

As was mentioned earlier, a number of investigators have proposed an eddy 
structure for the inner region of boundary layers that consists of a pair of 
counter-rotating vortices that are highly elongated in the streamwise direction and 
are parallel to the wall (Blackwelder 1978; Blackwelder & Eckelmann 1979; Lee, 
Eckelman & Hanratty 1974; Bakewell & Lumley 1967). The streaks of low-speed 
fluid (Kline et al. 1967) are postulated to be lying between the counter-rotating 
vortices. To be consistent with this proposed wall-layer structure and with the 
observation that the streaks are very persistent, the topology of some hairpin-vortex 
models include trailing vortex legs extending upstream and parallel to the walls. For 
instance, Smith (1978) refers to the longitudinal vortex pairs as ‘essentially the legs 
of the lifted vortex loop model of a burst proposed by Offen & Kline (1973) ’ (see also 
Head & Bandyopadhyay 1981 and Perry & Chong 1982). Head & Bandyopadhyay 
(1981) indicate that it is very likely that the hairpins have their origin in the 
longitudinal vortex motions close to the wall. However, as pointed out also by Head 
& Bandyopadhyay (1981) (page 323), it is not possible to deduce from the available 
experimental data whether the legs of the hairpins are extended in the streamwise 
direction forming the longitudinal vortex pairs or the hairpins are formed from the 
‘warping of transverse vorticity ’. 

It should be pointed out that the elongated-vortex model is not a necessary 
condition for the existence of streaks. For example, a hairpin vortex (with legs not 
elongated in the streamwise direction) travelling with a convection velocity higher 
than mean velocity in the sublayer can leave a wake of low-speed streamwise velocity. 

15 BLI  155 
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In any case, i t  is possible by only kinematical considerations to construct a velocity 
field with elongated u-eddies but without a pair of counter-rotating streamwise 
vortices surrounding it. In fact, in calculations of Kim & Moin (1979), contours of 
constant streamwise vorticity in a horizontal plane ,near the wall do not show 
elongated patterns, whereas the contours of streamwise velocity in the same plane 
do show the elongated streaky structures. We believe that there is a dearth of 
experimental measurements supporting the streamwise elongation of the proposed 
structures. It appears that an inner-region-flow model consisting of vortical 
structures with small inclination angles is more in accordance with the calculations 
or existing experimental data (Willmarth & Tu 1967) than is the longitudinal- 
vortex-pair model. 

The above studies, particularly those of Head & Bandyopadhyay (1981) and 
Willmarth & Tu (1967), provide strong evidence for the existence of hairpin vortices 
as one of the dominant structures in wall-bounded turbulent flows, and they certainly 
provide the foundation and a great deal of insight for the present investigation. 
However, there are some deficiencies in the data presented. The most important is 
that a hairpin vortex has never actually been observed (or detected) in a turbulent 
boundary layer; rather, the response of the visual indicators to the velocity field is 
observed. For example, in the visualizations of Head & Bandyopadhyay (1981), it  
is not clear that the elongated features seen in the planes inclined a t  45" to the flow 
direction are necessarily vortex tubes. This is particularly true since the still 
photographs from illuminated planes inclined at  135" to the flow were not obtained 
simultaneously with those in planes inclined at  45", raising the possibility of the 
presence of two different structures. Flow visualization with smoke (or dye) depicts 
the history of the flow rather than its local behaviour (see Smith 1984). In addition, 
visualization fields are limited to two dimensions, and one needs to extrapolate the 
three-dimensional structures (Smith 1984 provides some examples illustrating the 
difficulty and uncertainties involved in this process). The probe data are limited by 
the number of spatial points at  which correlations are obtained and by the small 
number of different quantities that have been measured. Clearly, all three components 
of the vorticity vector at  several spatial locations are needed to describe a hairpin 
vortex. A hairpin vortex is defined as an agglomeration of vortex lines in a compact region 
(with higher vorticity than the neighbouring points) that has a hairpin or horseshoe shape 
and therefore can best be represented and visualized by vortex lines drawn in 
three-dimensional space. In addition, in order to establish the spatial extent of the 
eddies and whether they extend throughout the boundary layer, velocity (or 
vorticity) correlations should be provided a t  several spatial locations. 

The objective of the present study is to search for, identify, and analyse hairpin 
vortices in turbulent channel flow. We will use a database generated by the large-eddy 
simulation (LES) technique (Moin & Kim 1982), which consists of instantaneous 
three-dimensional velocity and pressure fields collected at widely separated flow 
times. The calculations were performed at Reynolds number Re = 13800 based on 
centreline velocity and channel half-width, 6. The physical realism of the data has 
been verified by detailed comparison of statistical correlations and both instantaneous 
and conditionally averaged flow patterns with available experimental data (Moin & 
Kim 1982; Kim 1983) and recent direct numerical simulations (Moser & Moin 1984). 
In $2, we examine the distribution of the inclination angle of the vorticity vector 
at  several distances from the wall. In 9 3, velocity and vorticity two-point correlations 
with directions of separations along different inclined planes are presented. These 
correlations indicate the presence of strong vortical structures inclined at about 45" 
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FIGURE 1.  Coordinate system and sign convention for angles 0 and 4. 

to the flow direction. In  $4, we display the structure of the vorticity field using 
vorticity vectors projected onto planes inclined to the wall and vortex lines in 
three-dimensional space. 

In part 2, the contribution of the hairpin vortices to turbulence transport will be 
investigated. Using various conditional sampling criteria, we show that the bursting 
process is indeed associated with hairpin vortices surrounding the region where 
low-speed fluid is ejected from the wall region. 

2. Distribution of the inclination angle of the vorticity vector field 
The experiments of Head & Bandyopadhyay (1981) and Chen & Blackwelder (1978) 

as well as Theodorsen's (1952) analysis suggest that the dominant flow structures are 
inclined to the wall a t  about 45O. As was indicated in § 1, other experimental results 
show significantly lower inclination angles. However, with the exception of the work 
of Brown & Thomas (1967) these experiments were limited to the wall region. None 
of these studies included measurement of the inclination angle of the vorticity vector, 
which is the relevant quantity for determination of the orientation of hairpin vortices. 
In  this section, the statistical distribution of the inclination angle of the projection 
of vorticity vectors in (2, y)- and (y, 2)-planes (see figure 1) will be presented. 

Using the aforementioned LES database, the vorticity field was calculated from 
each stored velocity field. As in Moin & Kim (1982) the derivatives in the horizontal 
directions a/&, 3/32 are calculated by Fourier spectral methods and the derivatives 
in the normal direction a/ay by central differences on a stretched mesh. To in- 
crease the available statistical sample, the simulations reported in Moin (1 984) were 
extended in time to 11.536/u, (compared to 2.656/uT in Moin 1984). Here u, is the 
wall shear velocity, which is about 5 % of the mean centreline velocity U,,. 

At each grid point, the inclination angle to the wall of the projection of the vorticity 
vector in (2, y)-planes, 

8 = tan-l (ug/uz), 
15-2 
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FIGURE 2. Distribution of the inclination angle of the projection of the vorticity vectors in 
(z,y)-planes; data weighted with the magnitude of the projected vorticity. (a) y/S = 0.006 
(y+ = 3.85); ( b )  0.049; (c) 0.142; (d) 0.193; (e) 0.498; (f) 0.769; (8)  0.922; (h)  1.00. 
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FIQURE 3. Same aa 2 ( d )  but only using data from the lower side of channel. 

is calculated, where w, and coy are the components of the vorticity vector in the 
directions streamwise x and normal to the walls y respectively. The sign convention 
for the angle 0 and the coordinate system are shown in figure 1. In what follows we 
focus on the lower half of the channel. In  figure 2, histograms describing the 
distribution of this angle are shown at several distances y/S from the wall.? The 
histogram at each y-position is generated by calculating (and sorting) the angle 8 at 
all the grid points in the (2, 2)-plane passing through the fixed y-position. To improve 
the statistical sample, this procedure was repeated at all the available time levels and 
the results were averaged. The contribution of each grid point is weighted with the 
(normalized) magnitude of the projected vorticity vector, 

where ( ) indicates average over the corresponding horizontal, (z, 2)-plane. As a result 
of no-slip boundary conditions, wy is zero at the wall. Hence, in the immediate vicinity 
of the wall, the distributions are highly concentrated around 0" (and the complement 
angles, - 180" and + 180"). It is interesting that in this region distributions peak at  
slightly, negative angles. As one moves away from the wall, the peaks of the 
distributions shift from the second and fourth quadrants (figure 1) to the first and 
third quadrants, approaching 0" near the centreline. From y/S of about 0.2 to 0.8, 
the histograms indeed attain their maxima at about 45" (and the complement angle, 
- 135"), but indicate a rather broad distribution over other inclination angles. The 
ratio of the peak values of the distributions to their minimum values is generally in 
the range 2.5-3.5. Note that, for further improvement of the statistical sample, 
appropriate averaging of the histograms from both sides of the channel centreline 
was performed. As can be seen from a comparison of figure 3 (where the unaveraged 
distribution at y/S = 0.193 is plotted) with figure 2 (d), this averaging does not affect 
the general features of the distributions. The 180" period of the histograms in figure 2 
is simply a consequence of statistical invariance with respect to reflection of the 
z-axis. Its presence indicates the adequacy of the statistical sample. 

Figure 4 shows the histogram at y/6 = 0.193 that is constructed without weighting 
by the vorticity magnitude; i.e. only the vorticity inclination angles are considered. 
The contribution of each grid point to the appropriate &bin in the histogram is unity. 
The maximum still occurs at 45". However, the maximum-to-minimum ratio is 

t In figures 2-5, the ordinates are scaled down by the factor of 140. 
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FIQURE 4. Same as 2 ( d )  but with the data not weighted. 

appreciably lower than that in figure 2(d) (2.1 vs. 3.5). Thus, vorticity vectors of 
higher strength have a greater tendency to be found in planes inclined at 45' to the 
wall. The unweighted distributions at the remaining y/S locations are also calculated. 
Aside from the aforementioned difference in the peak-to-minimum ratio, they are 
generally similar to the weighted distributions. An exception is in wall proximity 
(e.g. y/S = 0.049 in figure 2) where instead of the secondary peak around 0' 
the unweighted distributions have plateaux. Also, note that both (weighted and un- 
weighted) distributions tend to be skewed toward angles of less than 45' with the 
tendency being more pronounced in the case of weighted distributions. 

For the channel flow considered here, the principal axes of the mean-strain-rate 
tensor, S,,, are inclined at  45" to the walls. Therefore, the production (stretching) of 
vorticity due to mean strain is highest along the lines inclined at 45" (or - 135') to 
the mean flow direction, x. On the other hand, a vorticity vector oriented at  135O 
(or -45") angle from the mean flow direction is destroyed most rapidly. If turbulent 
vorticity were generated only by the stretching of vorticity fluctuations by the mean 
strain, and noting that vorticity dissipation lags its production, then at any instant 
the probability of finding vortex lines inclined a t  45' (135') to the x-axis would be 
higher than at  other angles. Thus, in a large portion of the flow (0.2 < y/6 < 0.85), 
the shape of the distributions in figures 2(d)-(g), and the observation that the 
' peakiness' of the histogram in figure 2 (d) is more than that in figure 4, imply that 
vortex stretching by the mean strain is a dominant flow mechanism. In  addition, it 
can be shown (Deissler 1969) that the direction of maximum r.m.8. turbulent vorticity 
in a shear flow is at 45' to the flow direction only if 3 and are equal. If vortex 
stretching is the dominant flow mechanism, one would expect that the directions of 
maximum stretching and r.m.s. vorticity would be the same. This condition can only 
be true if = q, an unexpected result in a highly anisotropic flow. However, it 
turns out that in the regions away from the wall this condition is indeed satisfied, 
as demonstrated in LES calculations of Moin & Kim (1982) and recent direct 
numerical simulations of curved-channel flow (Moser & Moin 1984). Thus, the fact 
that the directions of maximum r.m.s. vorticity and stretching are the same is further 
evidence of the dominance of the vortex stretching by the mean strain. 

Other effects such as rotation of vortex filaments due to mean vorticity and 
vortex-induced velocity, and stretching by velocity perturbations, should also be 
considered. For example, production of turbulent vorticity by self-induced Stretching 
is a significant term in the mean-square turbulent-vorticity budget equation. In  fact, 
scaling arguments suggest that this term dominates (at least for high-Reynolds-number 
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FIQURE 5. Distribution of the inclination angle of the projection of the vorticity vectors in 
(y, %)-planes; data weighted with the magnitude of the projected vorticity. (a) y/8 = 0.014 
(y+ = 9.06); ( b )  0.049; (c) 0.086; ( d )  0.193; (e) 0.498; cf)  0.769; (9) 0.922; (h)  1.00. 
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flows) stretching due to mean motion (Tennekes & Lumley 1972). One physical 
explanation for the dominance of the mean-stretching term may be the special 
characteristics of the flow structure. For example, in a flow consisting essentially of 
hairpin vortices, there is little self-induced stretching (except near the tips), and the 
stretching due to mean motion is dominant. Note that the legs of the hairpins 
comprise most of the volume occupied by them. 

The inclination angles to the z-axis of the projection of vorticity vectors in 
(y, z)-planes, q5 = tan-' ( w g / w z ) ,  

were also calculated. Note that w, includes the mean vorticity. The sign convention 
for the angle q5 is also indicated in figure 1. The weighted distribution of q5 is shown 
in figure 5. These distributions are calculated in the same manner as those for angle 
8 shown in figure 2. In the vicinity of the wall, because of no-slip boundary conditions 
and strong mean spanwise vorticity, the distributions are narrow and peak at  180' 
(or - 180'). From the wall to about y/S = 0.1 the distributions become broader with 
their peak still at 180' and maximum-to-minimum ratio of about 8. Beyond 
y/S = 0.1, the maxima consistently occur at about 110" to 120" (or - 110' to - 120'). 
However, the concentration of vorticity vectors pointing in the spanwise direction 
(the direction of the mean-vortex lines) remains appreciable even a t  large distances 
from the walls. The symmetry of the distributions about q5 = 0 is a consequence of 
the statistical invariance of the flow with respect to reflection in the z-direction. 

The above study clearly shows the preferential alignment of the vorticity vectors 
in planes inclined at 45' to the flow direction. In  addition, there is a strong indication 
that vortex stretching by the mean strain is a dominant flow mechanism. However, 
the information about the structure of the flow that can be extracted from this study 
is limited. In particular, the connection between vorticity vectors and hairpin 
vortices cannot be established solely from the above histograms. For example, even 
though, in a large portion of the flow, the distributions attain their maxima at 45', 
one cannot conclude that this behaviour is due to the existence of a given large 
vortical structure with axis of circulation inclined a t  45' to the flow and extending 
through all the locations where the distributions peak at 45'. This issue leads us to 
the examination of two-point velocity and vorticity correlations. 

3. Two-point correlations of velocity and vorticity 
There are two methods of using two-point correlation functions to extract 

information on the spatial structure of the flow. One method, used by Townsend 
(1976), Grant (1.958), and others, is to examine two-point-correlation profiles for their 
consistency with a proposed model. This is the method used here. Another method, 
primarily due to Lumley (1967), is based on orthogonal decomposition of the 
two-point-correlation tensor, and is used to extract the deterministic structures 
contributing to all of the components of the correlation tensor. A two-dimensional 
variant of this method was recently applied to the LES database used in this work 
(Moin 1984). 

If the flow truly contains a dominant structure, distributed stochastically in space, 
its presence should clearly be marked in two-point correlation functions. However, 
as will be illustrated below, the degree of clarity is highly dependent on the choice 
of the directions of ('probe') separation. Ibis much more instructive to obtain two- 
point correlation functions with directions of separation aligned with the primary 
axes of the proposed eddy than aligned with the Cartesian coordinate axes. 



The vorticity field in turbulent channel $ow 45 1 

1 .o 
0.8 

3 
q3 0.6 

2 0.4 

a 0.2 

0 
%a 

-0.2 3 
1 .o 
0.8 

q3 0.6 

q' 0.4 

0.2 

0 

-0.2 

3 

0 

I 
0 

FIGURE 6. Two-point correlations of the velocity components with the direction of separation in 

(y+ = 16.08); (6) 0.086; (c) 0.298; (d) 0.498; (e) 0.769; cf)  1.00. 
(x,y)-plane and inclined at 45' to the wall: -, Ruu; ----, R . ---, Rww. (a) y/6 = 0.025 

In  $2, i t  was shown that in a large portion of the flow the vorticity exhibits a 
preferred inclination of about 45' to the flow direction. Correlations of the three 
components of velocity at  two points along lines inclined at 45" and 135" (see figure 1) 
are shown in figures 6 and 7, respectively. Correlation between two quantities p, q 
at spatial points x and x' is defined as 

P(X) q(x') R,,(x, x') = ___I- 
(P(x)2)' (a(xO2? * 

Using the flow homogeneity in the x- and z-directions, R,, is only a function of (y, r), 
where y is the vertical location of the fixed point and r is the separation vector, x' -x. 
In the present work, r = r, is separation along a line in the (2, y)-plane inclined 
at 45" to the flow; r = rn, along a line inclined at 135'; r = ru, along the y-direction; 
and r = rz indicates separation in the spanwise z-direction. The striking difference 
between the correlations presented in figure 6 and 7 is in the behaviour of R,,, the 
correlation between spanwise velocity components separated along rs and rn. In  
figure 6, except when the fixed point is located in the vicinity of the wall (y' < 50), 
R,,(y, rg) does not become negative. The two-point correlation profiles show a 
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FIQURE 7. Two-point correlations of the velocity components with the direction of separation in 
(x, y)-plane and inclined at 1 3 5 O  to the wall; -, Rul ;  - - - - ,  Rvv; ---, Rww. See the caption of 
figure 6 for the y-location of the fixed point for each figure. 

relatively large distance over which the eddies are correlated. On the other hand, 
R,,(y, r,) profiles shown in figure 7 rapidly turn negative with very sharp minima 
and a gradual return to zero. As illustrated in figure 8, this is precisely what one would 
expect if the flow consists of dominant vortical structures with the axis of circulation 
inclined at 45' to the flow direction. Note the sign reversal of w across the 
cross-section of the structures. Near the walls (y+ < 50) the eddies are not inclined 
at 45O, and R,,(y, r,) is expected to have a negative region. In figure 9, velocity two- 
point correlations with direction of separation along the y-axis are shown. As in 
figure 7 ,  R,,(y, r y )  profiles turn negative, but with smaller absolute values. 

Two-point correlations of the component of vorticity in the r, direction, w,, are 
shown in figures 10 and 11. Away from the wall the RWgWg(y, r,) profiles (figure 10) 
do not have a negative region for r ,  > 0. They also show the great distance along 
r, where vorticity fluctuations are correlated. On the other hand, the profiles of 
R (y, rn)  (figure 11) show a very rapid decay having virtually a triangular shape. 
Thus, both vorticity and velocity two-point correlation functions are in vivid 
agreement with the flow model consisting of dominant vortical structures that (in the 
regions away from the wall) are inclined a t  45O. The profiles of R,sos(y, r n )  show that 

WE W 8  
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FIQURE 8. Sketch of the vortical structures inclined at 45' to the wall. 
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FIQV~E 9. Two-point correlations of the velocity components with the direction of separation in 
the y-direction (i.e. inclined at 90" to the wall): -, Ruu; ----, Rvv; ---, R-. See the caption 
of figure 6 for the y-location of the fixed point for each figure. 
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FIGURE 10. Two-point correlation of the s-component of vorticity (see figure 8) with the direction 
of separation along r8 (inclined at 45’ to the wall). See the caption of figure 6 for the y-location 
of the fixed point for each figure. 

the diameters of vortical structures increase with distance from the wal1.t The 
increase in the eddy diameter is consistent with the vortex-stretching mechanism. 
The vortex filaments are stretched more severely near the wall. In  addition, the tips 
of the hairpins are not stretched, whereas the ‘legs’ are continuously stretched, and 
one would expect a gradual transition from the relatively large tip diameter to the 
smaller diameter of the legs. It should be pointed out that the increase in the 
correlation lengths displayed by RmswS!y, r,) (in the regions away from the wall) may 
also partially be attributed to higher inclination angles of vortical structures in the 
regions away from the wall (see 54). 

It may appear that the R,,(y, r,) correlations in figure 7 are not quantitatively 
in agreement with the RwnwS(y, r,) correlations in figure 11. In particular, one may 
expect that in each of the profiles in figure 7 the distance between the peak and 

t Extraction of quantitative information from the present database should be done with some 
caution. In  the calculations of Moin & Kim (1982) the computational grid resolution in the spanwise 
direction was not fine enough to capture the streaks at their proper scale. The calculations did 
reproduce the high- and low-speed streaks alternating in the spanwise direction, but with a mean 
spacing of about twice that observed in laboratory visualizations. 
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FIGURE 11. Two-point correlation of the s-component of vorticity (see figure 8) with the direction 
of separation along r ,  (inclined at 135" to the wall). See the caption of figure 6 for the y-location 
of the fixed point for each figure. 

negative minimum be equal to the estimated diameter of the vortical structures (i.e. 
equal to half the base of the corresponding triangle in figure 11). This need not be 
the case. If we assume, as in figure 8, that the randomly located, inclined vortical 
structures have cores of constant vorticity, the location of the negative minimum in 
the profile of R,,(y, r,) is highly dependent on the decay rate of w outside the vortex 
core. This decay rate is determined by the other vortical structures in the proximity. 
The object lesson here is that one should be cautious in deducing the scale of vortical 
structures from velocity correlations. 

To examine the structure of the flow in the spanwise direction, correlation functions 
for points separated in the spanwise direction were calculated. In figure 12, the 
profiles of Ru8u8(y,rz) do cross the abscissa, indicating the presence of pairs of 
counter-rotating vortical structures. However, the negative correlations generally 
have small values, extend over a wide range of rz, and (especially away from the wall) 
do not show a definitive sharp minimum. This behaviour may be attributed to 
significant vl;riation in the spanwise dimension and in the relative location of the 
counter-rotating vortical structures. This finding does not preclude the above vortical 
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FIQURE 12. Two-point correlation of the 8-component of vorticity (see figure 8) with the direction 
of separation along the z-direction. (a )y /6  = 0.086 (y’ = 55); (b)0.298; (c)0.498; (d) 0.769; (e)0.922; 
(f) 1.00. 

structure being part of a hairpin vortex. It simply implies that the variation in the 
dimensions and the location of the other leg of the proposed hairpin is broader in the 
z-direction than in (x, y)-plane. In fact, it is quite plausible that, in general, the legs 
of hairpins would be located in different (z, r,)-planes. Note that stretching by the 
mean strain takes place only in (5, y)-planes and, therefore, it is expected that the 
thickness of an inclined vortical structure along the r,-direction is smaller than its 
extent along the z-direction. Thus, one expects that the cross-section of each hairpin 
leg is elliptical with the major axis in the z-direction. 

The velocity and vorticity correlation functions, particularly those with separations 
in the (x, y)-plane, indicate that the flow contains dominant, inclined vortical 
structures. Moreover, i t  is shown that the ‘diameter’ of these vortices increases as 
one moves away from the wall. However, the two-point correlations with probe 
separation in the spanwise direction are not as conclusive as those in the (x, y)-plane. 
It is difficult, therefore, to get definitive information about both legs and their relation 
to each other, particularly since we have not obtained any data on the link between 
the two legs; i.e. the tip of the hairpin. In the next section, we study the 
instantaneous three-dimensional structure of the vorticity field. 
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4. Structure of the instantaneous vortidty field 
In  this section, we examine the structure of the vorticity field at one instant in 

time, selected randomly from the aforementioned database. 
Figure 13 shows the projection of vorticity vectors in three (2, r,)-planes (inclined 

at 45'). The lower boundary of each plot is at y / S  = 0.193 (y+ = 123), and its upper 
boundary is at the channel centreline. Recall that in figure 2 the distributions 
attained their maxima at 45' in the regions away from the wall (i.e. y / S  2 0.193). 
In figure 13, some of the structures resembling hairpin vortices are shaded. The 
structures are identified as those having two regions (legs) with opposite w, signs 
connected at the top by a region with w, = 0 and finite w,. These plots provide an 
indication of the population density of hairpins in the instantaneous flow fields. It 
appears that the flow contains an appreciable number of structures with this general 
form. However, each structure has its own distinct configuration and individual 
height extended above the wall. It should be pointed out that our view is limited 
to a two-dimensional plane, and we are identifying only those hairpins with legs in 
approximately the same (2, r,)-plane. Except for one or two exceptions, the hairpin- 
like structures appearing in these planes are such that the leg with positive w, is to 
the right of the one with negative w,. This finding is consistent with the notion that 
these vortices are formed as a result of deformation or roll-up of sheets of transverse 
vorticity with the resulting induced normal velocity away from the wall. The same 
feature can also be seen in plots of constant w, contours in 45' inclined planes (Moin 
1984). The contours of w, in planes inclined at 135' generally show rounded features 
whereas elongated patterns can be seen in 45'-inclined planes (Moin 1984). 

In  conformation to its definition, a hairpin vortex is best displayed by vortex lines 
drawn in three-dimensional space. The location of a vortex line in space, x, is defined 
by 

d x w  
ds 1 0 1 '  
_ -  -- 

where s is the distance along the vortex line. Starting from an initial location, x,, 
in the three-dimensional vorticity field, o(x), this equation can be integrated for x(s). 
For this purpose the second-order Runge-Kutta method was used for the numerical 
integration, and second-order Lagrange interpolation was used to compute the 
vorticity o(x) from the grid values. It turns out that the choice of x, is very important. 
Infinitely many vortex lines can be drawn in the flow. If  we choose X, arbitrarily, 
the resulting vortex line is likely to wander over the whole flow field like a badly 
tangled fishing line, and it would be very difficult to identify the organized structures 
(if any) through which the line may have passed. This difficulty is partly due to the 
rapid variation of vorticity fluctuations in the domain, and the resulting sensitivity 
of x to small perturbations in o. If x, is within an organized vortical structure, then 
the coherence of the structure would have a self-correcting effect in realigning the 
vortex line in the direction of the circulation axis of the structure. In this case, the 
vortex line will probably be confined to the core of the structure for large values of s. 
In  order to study the three-dimensional structure of the hairpin vortices, we use 
vorticity-vector plots such as those in figure 13 to guide the selection of x,. After 
selecting one of the shaded structures in figure 13, x, is chosen as a point in the shaded 
area (in the leg region). Starting from x,, (4.1) is integrated in both directions until 
the line intersects one of the side boundaries. This process results in a vortex line that 
starts from one side boundary, passes through x,, and ends in another side boundary. 
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FIQURE 13. Projection of the instantaneous vorticity vectors in three (2, r,)-planes (inclined at 45'). 
The vectors are drawn on the inclined planes. The lower boundary of each figure is at y/8 = 0.193 
(y' = 123). The spanwise (horizontal) extent of the figure is rr8. 
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FIGURE 14. Two three-dimensional views of a vortex line displaying a hairpin-like structure. (a) 
end view, the spanwise extent of the figure is a6 and its streamwise extent is 2 ~ 6 .  The tick marks 
on the vertical line correspond to 0.58; (a) elevated view. The mean flow is in the z-direction. 

FIGURE 15. Close-up of the hairpin-like structure in figure 14. (a) 2-D end view, the spanwise 2 extent 
of the figure is 1.18 (700v/u7); (b) 2-D side view ((x, y)-plane), the streamwise x extent of the figure 
is 2.156 (1380v/u7). 

Figure 14 shows two three-dimensional views of a vortex line passing through one 
of the structures in figure 13 (labelled 1).  The hairpin-like shape is quite apparent. 
Figure 15 shows the close-up portion of the vortex line shown in figure 14 that has 
a hairpin shape. In figure 16, a vortex filament composed of several vortex lines in 
the neighbourhood of the line in figure 15 is shown. Note that, in the vicinity of the 
hairpin, all of the lines remain adjacent to each other, but may diverge farther away 
from it. It appears that the vortex lines with transverse vorticity agglomerate (or 
roll up) into a rod of vorticity forming a vortex loop. It is only this vortex loop in 
the figure which may be considered to be a true vortex (with appreciably higher 
vorticity than its neighbouring points). The diverging vortex lines pointing in the 
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FIGURE 16. A set of vortex lines (vortex filament) in the neighbourhood of the line in figure 15. 
(a )  3-D view; ( b )  end view; (c) side view. For dimensions see caption of figure 15. 

spanwise direction are associated with transverse mean vorticity in the flow and do 
not constitute a vortical structure. Figure 17 shows another set of vortex lines 
corresponding to the structure labelled 2 in figure 13. Again, a hairpin vortex is clearly 
discernible. Figure 18 shows the vortex lines obtained using the same starting points 
as in figure 17, but with step sizes, As, two and five times larger than in figure 17. 
Because of the coherence and smoothness of the vorticity field within the hairpin (in 
contrast to the background turbulence), the vortex lines in figures 17 and 18 are nearly 
identical in its vicinity; whereas, away from i t ,  they tend to be different. The hairpin 
vortices are clearly formed from the deformation of sheets of transverse vorticity and 
generally do not have legs elongated in planes parallel to the wall (x- or z-direction). 
Moreover, each hairpin vortex is not necessarily confined to a plane. 

In agreement with Hama’s (1962) analysis (see also Hinze 1975), due to self- 
induction effects the tips of the hairpins shown in figures 16 and 17 have a bottle 
neck (Q) shape. We have verified this result from Hama’s paper with our recent 
unpublished computations. It can also be shown (Hama & Nutant 1961) that induced 
velocity on a curved vortex filament is largest in the region of the highest curvature. 
Thus, the tip region of the hairpins should have a higher induced velocity than the 
legs and hence inclined at a higher inclination angle. The side views in figures 16 and 
17 clearly show this effect (as do the experiments of Head & Bandyopadhyay). In 
fact, the general shape of the vortex lines appearing in the side views in figure 16 
and 17 (inclined structures with a plateau between the tip and the legs) is strikingly 
similar to the photographs of horseshoe vortices generated by trip devices (Weske 
& Plantholt 1953). The agreement between the general features of the hairpin vortices 
shown in the present work and those in the experiments of Weske & Plantholt and 
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(b) 

46 1 

FIGURE 17. A set of vortex lines (vortex filament) displaying a hairpin-like structure. (a) 3-D view, 
the streamwise extent of the figure is 1.968 (1257v/u1) and its spanwise extent is 0.748 (471v/u1); 
(b)  end view ((y, %)-plane); (c) side view ((5,~)-plane). 

FIGURE 18. Same as figure 17 (a), except that the step size, A8, used for numerical integration of 
(4.1) is: (a) two times, and (b)  fives times that used to generate figure 17. 
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studies of Hama provides evidence that the present computations have been faithful 
to the dynamics of the hairpins at least throughout part of their evolution. However, 
it should also be pointed out that, as each vortex loop is continuously stretched, its 
cross-section area decreases while its vorticity increases. Since the computational- 
grid resolution is not sufficiently fine for the effect of molecular viscosity to be 
significant at the grid scale, one cannot expect the calculations to represent explicitly 
the final stages in the evolution of the hairpins. 

Finally, we point out an interesting result related to the fact that tips of the 
hairpins are bulged out. Hama's (1962) computations show that the rounded or 
R-shaped tip of the hairpins progressively becomes more pronounced and can be 
closely fitted by a circular arc resembling a ring vortex. This result provides a 
mechanism for the generation of ring vortices and hence establishes a consistency link 
between Falco's (1977) observations of ring vortices in the outer regions of turbulent 
boundary layers and the hairpin or loop vortices detected in the present study. 
Moreover, in a smoke-filled turbulent boundary layer, the pattern resulting from 
illumination of an (2, y)-plane that intersects the bulged-out portion of the tip of the 
hairpins is identical with that of the cross-section of a ring vortex. 

5. Summary and conclusions 
In this study, using an LES data base, we searched for, identified, and analysed 

hairpin vortices in turbulent channel flow. The study was conducted in three parts. 
It was shown that in a large portion of the flow the distribution of the inclination 
angleofvorticity vector attainsits maximum a t  45" (and - 135") to the wall. Two-point 
correlations of velocity and vorticity fluctuations were calculated. A novel feature 
of some of these correlation functions was that the direction of ('probe ') separation 
was inclined at  45' and 135" to the flow direction. The correlations provide definitive 
support for a flow model consisting of dominant vortical structures inclined a t  45" 
to the wall. The 'diameter' of these structures increases with distance from the walls. 

Instantaneous vorticity vectors projected onto planes inclined at 45" to the flow 
direction indicate the presence of an appreciable number of hairpin vortices. These 
two-dimensional vector plots were also used to find starting points from which vortex 
lines in three-dimensional space were traced out. These vortex lines clearly display 
the three-dimensional structure of the hairpins. It is shown that the hairpins are 
formed from the deformation (or roll-up) of sheets of transverse vorticity, and are 
not necessarily confined to a two-dimensional plane. In constructing a mathematical 
model of turbulent boundary layers, one should consider the relative locations of the 
legs of the hairpin vortices as a random variable. 

The previous studies cited in $1 provided evidence for the existence of hairpin 
vortices in turbulent boundary layers, whereas, in this investigation, they are found 
in turbulent channel flow. The two flows have significantly different outer-layer 
structures, but are very similar in the inner layer. This finding suggests that the 
hairpin vortices are the characteristic structures of all wall-bounded flows, irrespective 
of their outer boundary conditions. 

We are indebted to Drs Robert Rogallo, Anthony Leonard and Robert Moser for 
helpful discussions during the course of this study. 
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